

Loads v2

loads v2 is an AWS-orchestrating load-generation tool, a.k.a load-tester.

Core features:

	Any language can be used to write a load-generator

	Metric collection (Statsd, logfiles) built-in

	Grafana metric dashboards for each run

	Ability to set up the service being load-tested

	Load-generation strategies can combine load-generators

	RESTful API for triggering load-tests

Narrative Documentation

To start learning about loads, how to set it up, how to write load-
generators, and how to run load-testing strategies – start here.

	About Loads
	Background

	Load-Test Architecture

	Database Schema

API Documentation

loads documentation for developers that wish to work directly with the
loads code-base and/or create their own custom extensions for load-testing
orchestration.

	API Documentation

	loadsbroker.aws

	loadsbroker.broker

	loadsbroker.db

	loadsbroker.dockerctrl

	loadsbroker.exceptions

	loadsbroker.extensions

	loadsbroker.main

	loadsbroker.options

	loadsbroker.ssh

	loadsbroker.util

	loadsbroker.webapp.api

	loadsbroker.webapp.views

About Loads

Welcome to loads v2, a load-testing tool that strives to provide a
powerful and flexible load-testing environment for websites, web services,
web applications, and network daemons.

Background

loads v2 was created to address a few short-comings in available load-
testing tools, including the original loads tool.

Some missing features in existing solutions:

	Inability to specify how many machines to use per load-test

	Load-test client/script required using a specific language

	Unable to effectively test alternate protocols (websockets)

	Inability to spawn the service being load-tested for each load-test

To address these short-comings, loads doesn’t define how/what a load-
tester should be written in or what it can do. Load-testers can be any
program packaged in a docker container that can be run solely via
environment/command-line arguments.

By focusing solely on orchestrating docker containers across
AWS, load-tests become very dynamic, capable of running multiple
programs at once.

Since loads v2 can orchestrate the running of dockerized programs,
if the service to load-test is also dockerized then it can be deployed
and run prior to a load-test as well. This makes it easier to tweak
configuration parameters to find more robust deployment configurations and see
the new load-test results quickly.

Load-Test Architecture

loads can be setup in a few different configurations, depending on desired
requirements and available equipment. This configuration has InfluxDB on a
separate node, but if the node running the loads-broker is sufficient,
then it can be run there.

[image: ../_images/loads.png]
The loads-broker is the orchestration program that coordinates all the
running strategies and AWS Test Nodes.

AWS Test Nodes are dynamically created by the loads-broker as needed
to fulfill the load-test strategy. Each AWS Test Node has docker
installed, which the loads-broker communicates with to have
heka and the configured load-generator containers installed.

Each load-tester on each AWS node is supplied with appropriate information
to genererate load against the service to test, and sends metrics data to the
local heka container which aggregates the data before relaying it to
the InfluxDB node.

The service being tested should send metrics data to InfluxDB as well, so that
metrics gathered by the load-generators can be easily compared with service
metrics.

Database Schema

A high-level database entity-relationship diagram:

[image: ../_images/db_erd.png]
The core organization from the top-most down:

	Project

	A project is the top-level organization in loads-broker. Each
separate service to test should have a project. Projects may have multiple
strategies associated with them.

	Plan

	A load-test plan defines one or more Step’s to run, along with when the
Step should start/stop.

	Step

	A Step contains all the information needed to allocate AWS
instances (instance type/region/count), what docker container to
run, how soon after the Plan is started to run it, how long the
container should be allowed to run for, and what environment vars and
command-line arguments it should receive.

	Run

	Each time a plan is triggered, a Run is created. Runs track when the
plan was started/stopped, and its current state. Runs also record the
execution of each step as a StepRecord. Each StepRecord records when a
step for the plans run was started/stopped.

	StepRecord

	Records a Step for a Run, when it was started/stopped.

Projects, Plans, and Step’s need to be created in the database
before loads-broker can be run. Run’s and StepRecord’s are
created when a Plan is run by the loads-broker.

Warning

The Step’s for a Plan cannot be changed if the Plan has been run. This is

because a Run reflects a run of the strategy, and the information regarding
the run becomes inaccurate if it fails to represent the running of the
StepRecord’s.

Changing Step configurations for a Plan should be done by forking the Plan

and changing the new one before any Run’s are done.

API Documentation

Reference documentation for loads code-base:

	loadsbroker.aws

	loadsbroker.broker

	loadsbroker.db

	loadsbroker.dockerctrl

	loadsbroker.exceptions

	loadsbroker.extensions

	loadsbroker.main

	loadsbroker.options

	loadsbroker.ssh

	loadsbroker.util

loadsbroker.aws

Core EC2 Classes

Helpers

loadsbroker.broker

Core Classes

Utility

loadsbroker.db

Database Tables

Utility

loadsbroker.dockerctrl

Core

Utility

loadsbroker.exceptions

loadsbroker.extensions

Core

loadsbroker.main

loadsbroker.options

loadsbroker.ssh

loadsbroker.util

loadsbroker.aws

Core EC2 Classes

Helpers

loadsbroker.broker

Core Classes

Utility

loadsbroker.db

Database Tables

Utility

loadsbroker.dockerctrl

Core

Utility

loadsbroker.exceptions

loadsbroker.extensions

Core

loadsbroker.main

loadsbroker.options

loadsbroker.ssh

loadsbroker.util

loadsbroker.webapp.api

API Handlers

Base Class

loadsbroker.webapp.views

Index

 A
 | D
 | H
 | L
 | S

A

 	
 	AWS

D

 	
 	docker

 	
 	dockerized

H

 	
 	heka

L

 	
 	load generator

 	
 	loads-broker

S

 	
 	statsd

Glossary

	AWS

	Amazon Web Services.

See also

AWS documentation [http://aws.amazon.com/]

	docker

	Docker makes it convenient to package programs up in easily runnable and
distributable containers.

See also

docker website [http://docker.io/]

	dockerized

	The packaging of a program to run inside a docker container.

	heka

	A log/metric analysis daemon, that is run on every machine the
load-generation strategy utilizes.

See also

heka documentation [http://hekad.readthedocs.io/]

	load generator

	A load-generator is a program that should generate load. The
load-generator runs on many machines and should feed relevant metrics
data to the local statsd receiver. The only requirement on the
load-generator is that it should be configurable solely via environment
and/or command line arguments. Load-generators are packaged for use in
loads via docker as containers.

	loads-broker

	load-testing orchestration program, written in Python 3.

	statsd

	A network daemon that collects stats metrics. In loads this is
usually a local heka instance.

See also

Etsy’s statsd [https://github.com/etsy/statsd]

 _static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/images/db_erd.png
runningcontainerset

£ id
uud
created_at
started_at
completed_at
run_id
container_set_d

INTEGER

CHARACTER VARYING
TIMESTAMP(6) WMITHOUT TIME ZONE
TIMESTAMP(6) WMITHOUT TIME ZONE
TIMESTAMP(6) WMITHOUT TIME ZONE
INTEGER

INTEGER

run
—> & id TR
uuid CHARACTER VARYING
state INTEGER
created_at TIMESTAMP (6) WITHOUT TIME ZONE
starled_at TIMESTAMP (6) WITHOUT TIME ZONE
completed_at TIMESTAMP(6) WITHOUT TIME ZONE
aborted BOOLEAN
strategy_id INTEGER
containerset
— P i INTEGER
uuid CHARACTER VARYING
name CHARACTER VARYING
run_delay INTEGER
run_max_fime INTEGER
instance_mgion USER-DEFINED

instance_type

container_url

dns_name
port_mapping

docker_series
strategy_id

container_name

envionment_data
additional command_args CHARACTER VARYING

volume_mapping

CHARACTER VARYING

instance_count INTEGER

CHARACTER VARYING
CHARACTER VARYING
CHARACTER VARYING

CHARACTER VARYING
CHARACTER VARYING
CHARACTER VARYING
CHARACTER VARYING
INTEGER

strategy

> F i INTEGER
uud CHARACTER VARYING
name CHARACTER VARYING

description CHARACTER VARYING
enabled BOOLEAN
project_id INTEGER

project
& INTEGER
uuid CHARACTER VARYING
name CHARACTER VARYING

home_page CHARACTER VARYING

_static/up.png

_static/minus.png

_static/comment-close.png

_static/images/loads.png
Broker Node AWS Test Node(s)

dashboard docker daemon

broker

InfluxDB Node

Tested Service

InfluxDB

nav.xhtml

 Table of Contents

 		Loads v2

 		About Loads

 		Background

 		Load-Test Architecture

 		Database Schema

 		API Documentation

 		loadsbroker.aws

 		Core EC2 Classes

 		Helpers

 		loadsbroker.broker

 		Core Classes

 		Utility

 		loadsbroker.db

 		Database Tables

 		Utility

 		loadsbroker.dockerctrl

 		Core

 		Utility

 		loadsbroker.exceptions

 		loadsbroker.extensions

 		Core

 		loadsbroker.main

 		loadsbroker.options

 		loadsbroker.ssh

 		loadsbroker.util

 		loadsbroker.aws

 		Core EC2 Classes

 		Helpers

 		loadsbroker.broker

 		Core Classes

 		Utility

 		loadsbroker.db

 		Database Tables

 		Utility

 		loadsbroker.dockerctrl

 		Core

 		Utility

 		loadsbroker.exceptions

 		loadsbroker.extensions

 		Core

 		loadsbroker.main

 		loadsbroker.options

 		loadsbroker.ssh

 		loadsbroker.util

 		loadsbroker.webapp.api

 		API Handlers

 		Base Class

 		loadsbroker.webapp.views

_images/db_erd.png
runningcontainerset

£ id
uud
created_at
started_at
completed_at
run_id
container_set_d

INTEGER

CHARACTER VARYING
TIMESTAMP(6) WMITHOUT TIME ZONE
TIMESTAMP(6) WMITHOUT TIME ZONE
TIMESTAMP(6) WMITHOUT TIME ZONE
INTEGER

INTEGER

run
—> & id TR
uuid CHARACTER VARYING
state INTEGER
created_at TIMESTAMP (6) WITHOUT TIME ZONE
starled_at TIMESTAMP (6) WITHOUT TIME ZONE
completed_at TIMESTAMP(6) WITHOUT TIME ZONE
aborted BOOLEAN
strategy_id INTEGER
containerset
— P i INTEGER
uuid CHARACTER VARYING
name CHARACTER VARYING
run_delay INTEGER
run_max_fime INTEGER
instance_mgion USER-DEFINED

instance_type

container_url

dns_name
port_mapping

docker_series
strategy_id

container_name

envionment_data
additional command_args CHARACTER VARYING

volume_mapping

CHARACTER VARYING

instance_count INTEGER

CHARACTER VARYING
CHARACTER VARYING
CHARACTER VARYING

CHARACTER VARYING
CHARACTER VARYING
CHARACTER VARYING
CHARACTER VARYING
INTEGER

strategy

> F i INTEGER
uud CHARACTER VARYING
name CHARACTER VARYING

description CHARACTER VARYING
enabled BOOLEAN
project_id INTEGER

project
& INTEGER
uuid CHARACTER VARYING
name CHARACTER VARYING

home_page CHARACTER VARYING

_images/loads.png
Broker Node AWS Test Node(s)

dashboard docker daemon

broker

InfluxDB Node

Tested Service

InfluxDB

